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a b s t r a c t

Automatic container-code recognition is of great importance to the modern container management sys-
tem. Similar techniques have been proposed for vehicle license plate recognition in past decades. Com-
pared with license plate recognition, automatic container-code recognition faces more challenges due
to the severity of nonuniform illumination and invalidation of color information. In this paper, a com-
puter vision based container-code recognition technique is proposed. The system consists of three func-
tion modules, namely location, isolation, and character recognition. In location module, we propose a
text-line region location algorithm, which takes into account the characteristics of single character as
well as the spatial relationship between successive characters. This module locates the text-line regions
by using a horizontal high-pass filter and scanline analysis. To resolve nonuniform illumination, a two-
step procedure is applied to segment container-code characters, and a projection process is adopted to
isolate characters in the isolation module. In character recognition module, the character recognition is
achieved by classifying the extracted features, which represent the character image, with trained support
vector machines (SVMs). The experimental results demonstrate the efficiency and effectiveness of the
proposed technique for practical usage.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, ship transportation industry becomes more and
more important with the development of internationalization.
Meanwhile the number of containers transported has increased
with this trend. Recognizing container identity code (also known
as container code) becomes an essential for container manage-
ment. The traditional manual method to recognize container code
has lots of shortcomings, including slow speed, high error rate, etc.
So an automatic technique to identify the container is desired.
Comparing with other techniques, such as wireless sensor network
and radio frequency identification (RFID), a computer vision based
automatic container-code recognition (ACCR) is a vital technique
to manage containers efficiently. The ACCR system described in
this paper is to recognize ISO-6346 code on containers (ISO-
6346, 2010). According to ISO standards, the ISO-6346 code
consists of three parts: four capital letters, six digits, and one check
digit. There may be extra characters beside eleven ISO characters
on the container; however, these eleven ISO characters defined
by ISO standard are considered as a unique code to identify differ-
ent containers.

The ACCR system consists of three main modules: (1) locating
text-line regions (location), (2) isolating container-code characters
ll rights reserved.
(isolation), and (3) recognizing container-code characters (charac-
ter recognition). In the location module, text-line regions are iden-
tified based on the features of container code. In the isolation
module, container-code characters are segmented from the back-
grounds. In the third module, the extracted character images are
recognized and transferred into actual characters. The flowchart
of the ACCR procedure is given in Fig. 1.

The ISO standard only defines the code types on the container.
Colors of the characters and backgrounds, font types and sizes,
and container-code positions vary from container to container.
This introduces challenges to the ACCR application. Examples of
typical container images are given in Fig. 2. The characteristics of
the container summarized below:

1. Container code may occur in different positions, and may have
different colors, sizes, and font types.

2. The contrast between container-code characters and back-
grounds is sharp, which leads to strong vertical edges for each
character.

3. The alignment modes of container-code characters are varied.
For instance, container-code characters may be aligned hori-
zontally in one row to multi-row or vertically in one column.

4. For horizontal alignment mode, spaces between two successive
characters are small. And there are always several characters in
each text-line region. An example of text-line regions is shown
in Fig. 3.

http://dx.doi.org/10.1016/j.eswa.2011.08.143
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Fig. 1. Flowchart of automatic container-code recognition.

Fig. 2. Examples of container-code images.
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Fig. 3. The text-line regions and its process order.
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Since the horizontal alignment mode is a dominating mode, this
paper mainly describes the method applied to the horizontal align-
ment mode. The process can be easily adapted to vertical align-
ment mode by rotating the container image 180�. Only few
parameters need to be adjusted.

Although container-code recognition is similar to vehicle license
plate recognition (for example, both include three same function
modules: location, isolation, and character recognition), con-
tainer-code recognition is facing more challenges compared with
license plate recognition. Color (Deb, Kang, & Jo, 2009) and plate
edges (Duan, Du, Phuoc, & Hoang, 2005), which are very useful for
locating license plate region, cannot provide useful information
for container-code location. Moreover, container-code characters
are more easily affected by outdoor illumination conditions when
compared with license plate characters. Especially, surface curva-
ture introduces severe illumination change for container-code
characters. Due to such differences, methods for license plate recog-
nition may be not applicable to the container-code recognition.

In this paper, a computer vision based container-code recogni-
tion technique is proposed. This technique consists of three func-
tion modules: location, isolation, and character recognition. A
scanline-based text-line region location algorithm is implemented
in the location module, which identifies the text-line regions by
using a horizontal high-pass filter and scanline analysis. In isola-
tion module, a two-step segmenting operation is first applied to
text-line regions. Then, a projection process is implemented to iso-
late characters from these regions. In the character recognition
module, SVMs are trained to classify the isolated characters with
extracted features. Experiments are carried out with 1214 con-
tainer images.

The rest of this paper is organized as follows. Related works is
overviewed in Section 2. An algorithm to locate text-line region
is described in Section 3. Sections 4 and 5 are devoted to the isola-
tion and character recognition respectively. Experimental results
are presented in Section 6. This paper is summarized in Section 7.
2. Related works

Locating text-line regions on a container is a challenge because
their positions, colors of characters and backgrounds, and font
types, sizes may vary from one to another. Kim, Kim, and Woo
(2007) proposed using an adaptive resonance theory (ART-2) based
quantization method to identify text-line regions with features of
characters such as color, size, and ratio of height to width. How-
ever, this method may fail when the container image suffers from
nonuniform illumination. Moreover, the ART-2 based quantization
is computation intensive. Similar to the methods in (Abolghasemi
& Ahmadyfard, 2009; Huang, Chang, Chen, & Sandnes, 2008;
Huang, Chen, Chang, & Sandnes, 2009), He, Liu, Ma, and Li (2005)
proposed a method, where image edges were extracted and pro-
jected horizontally with a Gaussian smoothing filter. The position
of the local maximums and local minimums of the smoothed his-
togram were found. From each local maximum, the top and bottom
position of each text-line region can be obtained. However, this
method is a still lack of robustness for container images with
noises and character likenesses.

The purpose of character isolation is to isolate all eleven ISO
characters from backgrounds. Character isolation methods can be
roughly classified into two classes, i.e. global optimization-based
method and segmentation-based method. In global optimization-
based methods, the goal is to obtain a combined result of character
spatial arrangement and single character recognition result rather
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than only to obtain good recognition results for each character. In
Franc and Hlavac (2005) and Fan and Fan (2009), a hidden Markov
chain was used to formulate the dynamic segmentation of
characters, and the segmentation problem was expressed as the
maximum a posteriori estimation from a set of admissible segmen-
tations. However, the global optimization-based method is
impractical for real-time implementation. In segmentation-based
methods, text-line or plate region is segmented first. Then, vertical
and horizontal projections, connected component analysis (Li,
Zeng, & Lin, 2006; Mahini, Kasaei, Dorri, & Dorri, 2006; Martin,
Garcia, & Alba, 2002), or contour analysis (Anagnostopoulos,
Anagnostopoulos, Psoroulas, Loumos, & Kayafas, 2008) are applied
to obtain the position of each character and other binary object
measurements such as height, width, and area may be used to
eliminate noises. Since segmentation with one global threshold
cannot always achieve good results with nonuniform illumination,
local segmentation method becomes a better choice in this case.
The segmentation methods proposed in Niblack (1986), Sauvola
and Pietikinen (2000), Nakagawa and Rosenfeld (1979) are
adopted in Coetzee, Botha, and Weber (1998), Anagnostopoulos,
Anagnostopoulos, Loumos, and Kayafas (2006), Chang, Chen,
Chung, and Chen (2004) respectively. Although these segmentation
methods are well applied to vehicle license plate images, they may
fail for container images encountering nonuniform illumination. In
Naito, Tsukada, Yamada, Kozuka, and Yamamoto (2000), an image
is first divided into m � n fixed-size blocks, and then a threshold is
chosen for each block. However, the fixed-size block is not an opti-
mal choice for segmentation. Meanwhile, it is hard to determine
the size of blocks.

To recognize segmented character images, numerous methods
from template matching and neural network to SVM have been
investigated. The template matching technique is suitable to recog-
nize characters with non-deformable and fixed-size fonts. How-
ever, container-code characters do not meet such requirements.
Self-organized neural network (Chang et al., 2004), probabilistic
neural networks (Anagnostopoulos et al., 2006), and back-propaga-
tion neural network (Jiao, Ye, & Huang, 2009), HMM (hidden
Markov model ) (Duan et al., 2005), and SVM (Dong, Krzyzak, &
Suen, 2005; Shanthi & Duraiswamy, 2010) are well adopted meth-
ods in recognition. It has demonstrated that SVM outperforms
other recognition methods in previous study (Tapia & Rojas, 2005).
3. Scanline-based text-line region location

Text-line region location is the first module in the whole recog-
nition system. Its purpose is to distinguish text-line regions from
the backgrounds. Poor image quality, disturbances from other
characters, and the reflection from the container surface make it
a challenge to locate text-line regions accurately and efficiently.

As the color information is not useful for this application, a color
container image is first converted to a grayscale image with the fol-
lowing equation:

L ¼ 0:299Rþ 0:587Gþ 0:114B ð1Þ

where the R/G/B represent the red/green/blue component of the
color image.

According to container-code characteristic (2) and (4), lumi-
nance values change sharply at a line crossing a text-line region;
furthermore, such changes in the text-line region are much more
frequent and significant than in other non-text-line regions.
Fig. 4 gives an example of luminance changes in a container image.
Fig. 4(b) shows the cross-section line at position 1 while Fig. 4(c)
illustrates the luminance change at position 2. Based on above
observation, a text-line region can be identified by these sharp
changes and the change frequency. The proposed location proce-
dure is shown in Fig. 5.
3.1. Generating edge image

Since container-code characters have strong vertical textures, a
region with vertical textures will be identified and extracted as a
character region. A horizontal high-pass filter is applied to detect
the vertical edges. Such operation can be expressed as:

Ivg ¼ I � H ð2Þ

where I and Ivg are the original and vertical edge image respectively.
Operation ⁄ stands for convolution and H is a horizontal high-pass
filter, which is expressed as:

1
n
½�1; . . . ;�1; k;�1; . . . ;�1�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}n ð3Þ

where n is the length of H, and k = n � 1. We chose n = 13 in our sys-
tem. Fig. 6(b) shows the results of filtering two original container
images, which are shown in Fig. 6(a).

After filtering operation, every pixel in Ivg above a threshold T is
considered as a salient edge pixel. As the threshold is higher in
brighter regions, an adaptive thresholding operation based on the
mean luminance value in the filter window is implemented. The
pixel at (x,y) of the binary edge image Ivb is set to either 0 (non-
edge point) or 1 (edge point) according to:

Ivbðx; yÞ ¼
0; Ivgðx; yÞ < bMV ðx; yÞ
1; Ivgðx; yÞ > bMV ðx; yÞ

�
ð4Þ

where MV is the mean image of I obtained by an average filter.
MV(x,y) refers to a pixel value of MV, whose coordinate is (x,y).
And b is a coefficient, which is set as 0.1 by trial and error. The bin-
ary edge images are shown in Fig. 6(c).
3.2. Removing the non-character edges

Besides the character edges, there are many non-character
edges in Ivb, such as random noise edges, reflection edges, and
background edges. These non-character edges may interfere with
the container-code location.

In order to suppress these non-character edges, we obtain each
edge’s height and position by applying connected component anal-
ysis, firstly. Then, we remove two types of suppressed non-charac-
ter edges, which are defined as follows:

� Any edge shorter than the minimum height of container-code
character Ch

min;
� Any edge longer than the maximum height of container-code

character Ch
max on condition that the distance between the edge

and any character edge is larger than the maximum distance
between two successive characters Cdis.

Suppressed edges of the first type are mainly caused by stains
and random noises while the second type is usually background
edges or reflection edges, which are generated by the rugged con-
tainer surface or by the nonuniform illumination. The condition in
the second type is to prevent the character edges, which adhere
to the reflection edges, to be considered as non-character edges.
Fig. 7 shows two-type suppressed edges to be removed. After
removing these edges, most of the non-character edges are elim-
inated while character edges are preserved. The binary edge
images after removing non-character edges are shown in
Fig. 6(d).
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Fig. 4. Example of luminance changes (a) the luminance image; (b) cross-section line at position 1; and (c) cross-section line at position 2.
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3.3. Analyzing scanline

The procedure to analyze scanline for locating text-line regions
is illustrated in Fig. 8. Suppose that a ‘‘jump’’ is characterized by a
change of the luminance value from ‘‘1’’ to ‘‘0’’ or from ‘‘0’’ to ‘‘1’’.

Herein, we define a new term ‘‘scanline’’ for locating text-line
regions. A scanline is defined as a line at a row of Ivb, which starts
with a jump and ends with another jump. A group of neighboring
scanlines can comprise of a text-line region. Fig. 9 shows a scanline
and its jumps. The jumps in one scanline must satisfy the following
conditions:

� The distances of any two successive jumps in a scanline are
smaller than Cdis.
� There are at least Npl � 2 continual jumps in a scanline. Npl

denotes the minimum number of characters in a text-line
region. As there are at least three characters in a text-line
region, we set Npl = 3 in our system.

To locate text-line regions, we first scan image Ivb from left to
right for each row to find scanlines. Then, we connect the neigh-
boring scanlines together to comprise of text-line regions. The rela-
tionship of neighboring scanlines can be expressed as:
Con Sm
i ; S

n
j¼i�1

� �
¼ 1; Sm

i ðendÞ > Sn
j ðstartÞ and Sm

i ðstartÞ < Sn
j ðendÞ

0; otherwise

�
ð5Þ

where Sm
i denotes the mth scanline in ith row; Sm

i ðstartÞ and Sm
i ðendÞ

refer to horizontal start and end position of Sm
i respectively. If Sm

i

and Sm
i are connected to each other, Con Sm

i ; S
n
j

� �
returns one; other-

wise it returns zero.
Once the relationship of scanlines is identified, ‘‘scanline-

group’’ regions can be located by connected component analysis.
However, not all of these ‘‘scanline-group’’ regions are text-line re-
gions. Since a text-line region is determined by its characters’
edges, the height of text-line region is approximately equal to
the height of its corresponding characters. Therefore, any region,
whose height is shorter than Ch

min or longer than Ch
max is removed.

The final location results are shown in Fig. 6(e).

4. Container-code character isolation

The isolation module will isolate all the eleven ISO container-
code characters from the text-line regions. The isolation procedure
is illustrated in Fig. 10. Since container code may be aligned in sev-
eral text-line regions, we need to identify these text-line regions



Fig. 6. Some example results for location procedure (a) original container images; (b) edge images Ivg; (c) binary edge images Ivb; (d) binary edge images after removing non-
character edges; and (e) final results of text-line region location.
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based on the characteristics of the alignment modes. As the ISO
characters are printed from left to right and from top to bottom,
we process the text-line regions in the same order. Fig. 3 illustrates
such an order.

Suppose current text-line region Ac is fed into this module and
each character in this region is isolated. If all the eleven ISO char-
acters are not isolated, we move to the text-line region Aneighbor

adjacent to Ac until all the ISO characters are isolated. Specifically,
the relationship between Aneighbor and Ac should satisfy either of the
two conditions:

ln � rc < Dh and
jtc � tnj < eAheight

c

jbc � bnj < eAheight
c

(
ð6Þ
or

tn � bc < Dv and
jlc � lnj < eAheight

c

Aheight
c � Aheight

neighbor

��� ��� < eAheight
c

8<
: ð7Þ

where tc, bc, lc, rc and tn, bn, ln, rn refer to the top, bottom, and left and
right position of Ac and Aneighbor respectively. Dh and Dv are the max-
imum distance between two text-line regions in the horizontal and
vertical direction. Aheight

c and Aheight
neighbor are the height of Ac and Aneighbor

respectively. We set Dh ¼ Dv ¼ Aheight
c =2 according to the priori

knowledge of alignment mode. e is a small plus constant, which is
tolerance for noise. And we set e = 0.1 in our implementation. Eq.
(6) represents the horizontal relationship of two text-line regions
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while Eq. (7) is based on the vertical relationship. Eqs. (6) and (7)
are illustrated in Fig. 11(a) and (b) respectively.

As character sizes, and the distances between successive char-
acter are roughly same in one container image, the standard vari-
ances of them are used to valid these isolated container-code
characters. If the summation of the standard variances is smaller
than a threshold, these isolated characters are validated. Other-
wise, we continue the isolation process.

Usually, the check digit of container code is within its bounding
rectangle (see Fig. 12(a)). To recognize the check digit, this rectan-
gle needs to be removed. Detailed descriptions on the check digit
rectangle elimination and the character isolation from the text-line
regions are provided in the following subsections.

4.1. Isolating characters from a text-line region

To isolate the characters, the text-line regions are firstly seg-
mented. Then, vertical and horizontal projection is applied to get
the position of each character. This operations illustrated in Fig. 13.

4.1.1. Segmentation
Since container images are captured in the outdoor environ-

ment, they are subject to nonuniform illumination, reflections,
and shadows. This makes it difficult to separate characters from
backgrounds. Many segmentation approaches, which have been
successfully applied to license plate recognition, are not suitable
to container-code characters. Examples of a nonuniform illumina-
tion are given in Fig. 2(d)–(f).

To deal with these problems, we propose a two-step approach
to segment characters from the backgrounds. Although the whole
text-line region is subject to nonuniform illumination, local regions
can still be considered in an ideal condition of uniform illumina-
tion. In the first step, the text-line region can be roughly divided
into three area types, namely non-character area, character area,
and reflection area. The three area types in an original grayscale
image are illustrated in Fig. 14(a). In the second step, a combined
segmentation strategy is applied to these areas.

Dividing. Because character edges are stable and not sensitive to
nonuniform illumination, the text-line region is divided into
Analyzing co
scanlines to

region

Scanning to obtain
scanlines

Binary edge
image

Fig. 8. The procedure fo
different areas with the edges. To reduce the computational load,
the vertical version of filter H is applied to Ivg(A) i.e. text-line region
A in Ivg to generate the edge image Ivhg(A). Ivhg(A) consisting of both
vertical edges and horizontal edges can be expressed as:

IvhgðAÞ ¼ IvgðAÞ � HT ¼ IðAÞ � H � HT ð8Þ

where HT denotes the vertical version of filter H. After obtaining
Ivhg(A), the same adaptive threshold used in location module is
applied to generate the binary edge image Ivhb(A). Fig. 15(a) and
(b) show the original image I(A) and its binary edge image Ivhg(A)
respectively. Similar to the location module, we remove the non-
character edges according to edges’ height and width (any edge,
whose height is shorter than Ch

min; or any edge, whose height is
longer than Ch

max and width is shorter than Aheight
c =2, is removed).

The binary edge image after removing non-character edges is
shown in Fig. 15(c). Subsequently, the vertical projection histogram
of Ivhb(A) is calculated as:

hAðiÞ ¼
XAheight

j¼1

IvhbðAÞði; jÞ; i ¼ 1;2; . . . ;Awidth ð9Þ

where Aheight and Awidth represent the height and width of the text-
line region A respectively. Fig. 15(d) shows the vertically projected
results. Since usually reflections appear vertically and cross text-
line region (see Fig. 2(e)), the hA(i) in these areas are almost equal
to Aheight. Therefore, the areas with hA(i) larger than the threshold
T1 = (1 � e)Aheight are identified as reflection areas. Since non-char-
acter areas have few edges, hA(i) of non-character area are below
a threshold T2, where T2 < T1 and T2 = eAheight. A character area is de-
fined as an area with its hA(i) falling in [T2,T1]. The illustration of a
text-line region with different areas and their corresponding
thresholds is shown in Fig. 14(b). And Fig. 15(e) shows the different
areas after dividing.

Segmenting. After dividing the text-line region into different
areas, a combined segment strategy is applied. We only need to
deal with the areas containing characters, i.e. character areas and
reflection areas. For character areas, we assume that the character
and the background have two normal distributions with similar
variances. Therefore, Ostu’s segmentation method is applied to
each character areas (Otsu, 1979). For reflection areas, we use a
threshold defined as T3 = (1 � e)vmax to segment every reflection
area. vmax is the mean value of the largest k luminance values in
the reflection area. Here, we set k equal to 5% of pixels of the reflec-
tion area. Fig. 15(f) shows the final segmentation results.

The comparison of different segmentation methods is shown in
Fig. 16. We can observe that our approach is better than other
state-of-art methods. Each character is clearly separated from the
nnected
obtain
s

Removing the
unsatisfied regions

Text-line regions

r scanline analysis.



Fig. 10. Isolation framework.
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backgrounds, and there are few noises in our results when com-
pared with others.

4.1.2. Projection
After segmentation, projection method (Shi, Zhao, & Shen, 2005;

Wang, Ni, Li, & Chen, 2004) or connected component analysis (Li
et al., 2006; Mahini et al., 2006; Martin et al., 2002) is adopted to
isolate the characters from the text-line region. In our implemen-
tation, a projection method is used for computational simplicity.
To identify the horizontal confine of a character, vertical projecting
is carried out to obtain a histogram, whose minimum values allow
us to divide the text-line region into confined character areas. If
two adjacent areas are close enough, they will be merged into
one. Similarly, the top and bottom confine of each character can
be located by using horizontal projection. With the above process,
each character can be accurately located.

4.2. Removing the rectangle of the check digit

To remove the rectangle from the check-digit image, we use a
similar method as described in Kumano et al. (2004). Take the left
edge of the rectangle as an example. The horizontal position of first
change from ‘‘1’’ to ‘‘0’’ can be obtained by scanning check-digit
image from left to right at each row as shown in Fig. 12(b). Then,
vertical projection histogram of the change-point map Ip

ch is calcu-
lated, which can be expressed as:

hAcheck
ðiÞ ¼

XAheight
check

j¼1

Ip
chði; jÞ i ¼ 1;2; . . . ;Awidth

check ð10Þ

where Aheight
check and Awidth

check are the width and height of the check-digit
image. A vertical projection example is shown in Fig. 12(c). Since
the method in Kumano et al. (2004) does not work well in all situ-
ations, we choose the first position k in hAcheck

ðiÞ bigger than T4,
where there is T4 ¼ eAheight

check . After obtaining k, the left edge of the im-
age is made to be zero from 0 to k. Performing a similar operation
on the right, upper, and bottom sides of the check-digit image, we
can obtain a check digit image without the bounding rectangle
(see Fig. 12(d)).

5. Character recognition

The character recognition module is to convert isolated charac-
ter images into characters. We first extract the features which rep-
resent the character image. Edge densities generated by Sobel
operator in character image patches are used as the features in this



Fig. 11. The characteristics of the alignment modes: (a) the horizontal relationship; and (b) the vertical relationship of two text-line regions.

Fig. 12. Example of removing a rectangle from check-digit image: (a) original check-digit image; (b) the change point map (change points are shown in white color); (c) the
histogram of changing points; and (d) the final result.
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paper. Then, these features are fed into SVMs for classification.
Since there are two types of container-code characters, i.e. capital
letter and digit, we build two SVM based recognition models for
character recognition, one for capital letters and the other for dig-
its. The flowchart of the proposed character recognition is shown in
Fig. 17.

5.1. Feature extraction

Sobel operator is first applied to extract vertical edge map Cx

and horizontal edge map Cy from a character image Ic. Cy and Cx

can be obtained as follows:

Cx ¼
1 0 �1
2 0 �2
1 0 �1

2
64

3
75 � Ic ð11Þ
Cy ¼
�1 �2 �1
0 0 0
1 2 1

2
64

3
75 � Ic ð12Þ

Fig. 18 gives an example of extracted edge maps. To emphasize
the characteristics of each character, twenty-five local patches are
defined as the shadow regions in Fig. 19. In Fig. 19(a), there are
4 � 4 = 16 patches, which evenly divide the character image. In
Fig. 19(b), there are 3 � 3 = 9 patches, which overlap those patches
defined in Fig. 19(a). We can divide Cx and Cy into 25 patches
respectively. For each patch, the edge density is calculated as a fea-
ture. Suppose that Fl

x and Fl
y are the edge densities of Cx and Cy in

zone l and can be expressed as:

Fl
x ¼

P
ði;jÞ2ZðlÞCxði; jÞ
Zw � Zh

ð13Þ

Fl
y ¼

P
ði;jÞ2ZðlÞCyði; jÞ
Zw � Zh

ð14Þ

where (i, j) 2 Z(l) refers to the position of i, j belonging to zone l; Zw,
Zh is the width and height of the zone respectively. Thus, each char-
acter image has 50 features fed into the SVM classifier.

5.2. Classification

A SVM classifier is generally a supervised binary classifier based
on the statistical theory of Cortes and Vapnik (1995) and Burges
(1998), where experimental data and structural behavior are taken
into account for better generalization capability based on the prin-
ciple of structural risk minimization (SRM). Given a training data
set (xi,yi); i = 1, . . . , l, where xi 2 Rn is samples and yi 2 {1,�1} are la-
bels; l refers to the number of samples. The SVM classifies an input
z through the function:

f ðzÞ ¼
Xl

i¼1

aiyiKðz; xiÞ � b ð15Þ

b ¼ yr �
Xl

i¼1

aiyiKðxr ; xiÞ r ¼ 1;2; . . . ; l ð16Þ



Fig. 15. Two segmentation examples: (a) original container-code images; (b) binary edge images; (c) denoised binary edge images; (d) vertically projected results; (e)
different areas; and (f) final segmentation results.

Fig. 16. Comparison of segmentation: (a) original images; (b) results of Ostu’s method (Otsu, 1979); (c) results of Niblack’s method (Niblack, 1986); (d) results of logical level
technique (LLT) (Kamel & Zhao, 1993); (e) results of Sauvola’s method (Sauvola & Pietikinen, 2000); and (f) our results.
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Fig. 17. Flowchart of character recognition.
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(a) (b) (c) 
Fig. 18. An example of edge maps (a) original binary character image; (b)
horizontal edge map; and (c) vertical edge map.

Table 1
Performance evaluation of the proposed technique.

Module Daytime (%) Night (%) Accuracy (%)

Location 98.33 97.07 97.94
Isolation 96.36 94.25 95.71
Character recognition 98.11 97.09 97.80
Overall performance 92.96 88.84 91.68
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where coefficient ai are non-zero only for the subset of the input
data called support vectors; K(x,y) is a kernel function, which satis-
fies the Mercer conditions. The most commonly used kernels,
including radial basis, polynomial, and sigmoid. In this study, the
radial basis function (RBF) kernel is used, which can be express as:

Kðx; yÞ ¼ exp
� x� yk k2

2r2

 !
ð17Þ

When training the models, samples were collected by hand for
each character. Over 300 samples were marked for each character
to ensure the recognition performance.
6. Experimental results

The success of the container-code recognition is defined as a
process that is able to extract the text-line regions, isolate all the
eleven ISO characters, and recognize all these characters correctly.
The input to the recognition system is an image with container
code, and the output is a series of characters derived from the im-
age. This section presents the experimental results of the proposed
Fig. 19. Local patches fo
container-code recognition system, including location, isolation,
recognition, and overall recognition results.

In order to evaluate our method, 1214 container images
(640 � 480 pixels) obtained from real port environments were
used in the experiment, among which 376 and 838 container
images were captured during night and daytime respectively. Both
the brightness and contrast of the images change rapidly. And the
container codes in the images are of varied colors and sizes, and are
aligned and located differently.

The recognition results are given in Table 1, which includes
location, isolation, recognition, and the overall accuracy rate. The
accuracy rate for each module is defined as:

Accuracy rate ¼ Number of correctly processed samples
Number of all test samples

� 100% ð18Þ

The overall accuracy rate is the product of accuracy rates of the
three modules.

The proposed algorithms can accurately locate the text-line re-
gions for varied positions, colors, illumination conditions, align-
ment modes, and character sizes. Text-line region location
accuracy rate is as high as 97.94%. Examples for location during
daytime and night are given in Figs. 20 and 21 respectively. Multi-
ple missing characters and severe noise contamination are the ma-
jor reasons for incorrectly locating container code. Some examples
of failure in location module are shown in Fig. 22. Since faded and
seriously nonuniform illumination introduces difficulties to the
isolation module, 30 images at daytime and 21 images at night
were not successfully isolated. Thus, the isolation module achieved
an accuracy rate of 95.71%. Examples of isolation results are given
in Fig. 23. And some examples of the failure in isolation module are
shown in Fig. 24. Due to character deformity in some cases, 25
r feature extraction.



Fig. 20. Location examples of variety of containers at daytime.

Fig. 21. Location examples of variety of containers at night.
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character images were not recognized correctly, which led to a
character recognition rate of 97.80%. The overall recognition rate
is 91.68%, for the all 1214 images.

A comparison of He’s method in He et al. (2005) with ours for
location and isolation is given in Table 2. Since the details of charac-
ter recognition were not described in He’s paper, the comparison of
character recognition and overall performance is impossible. We
adopted four different segmentation algorithms (Kamel & Zhao,
1993; Niblack, 1986; Otsu, 1979; Sauvola & Pietikinen, 2000) in
the implementation of He’s isolation method. Our proposed method
outperforms He’s location and isolation algorithms, which relies
only on vertical edges of characters. In contrast, our location algo-
rithm not only makes use of vertical edges of characters but also ex-
ploits the spatial relationships between successive characters. In
addition, the proposed segmentation approach can deal with the
nonuniform illumination and reflection on the containers very well.



Fig. 22. Some failure examples of location.

Fig. 23. Examples of isolation results.

Fig. 24. Some examples of failure in isolation.

Table 2
Performance comparisons.

Method Location
(%)

Isolation (%)

He’s method (He et al.,
2005)

94.91 88.16 (Ostu’s method)

90.12 (Niblack’s method)
92.75 logical level technique
(LLT)
92.97 (Sauvola’s method)

Proposed method 97.94 95.71
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7. Summary

The time complexity of the proposed technique is linear with
the number of pixels of processed image. In the location module,
image graying, edge extraction, non-character edge elimination,
and scanline analysis, all have a time complexity of O(s), where
s = W � H, and W and H define the width and height of the con-
tainer image. For container-code character isolation, processing
unit is text-line region, which is only a small part of the container
image. Furthermore, all the operations of generating edge image,
eliminating noises, and projecting in a text-line region have a time
complexity O(a), where a� s is the number of pixels of the text-
line regions. For character recognition, the feature extraction pro-
cedure has no normalization, which results in that this procedure
performs very fast. In the implementation of SVM, the time com-
plexity of training algorithms is much higher than that of testing
phase of the SVM. However, the SVM training process can be per-
formed in advance. The SVM testing phase only requires O(MNs)
operations, where Ns refers to the number of support vectors.
And Ns is usually quite smaller than S, which refers to the number
of samples while M is the dimension of the feature vector. The
average time for processing a container image is less than
110 ms on a personal computer (Pentium-IV 2.4G with 1G RAM).

In this paper, we present a container-code recognition tech-
nique based on computer vision. There are two major contribu-
tions from this technique. The first one is the scanline-based
algorithm to extract text-line regions, which combines the vertical
character edges and the spatial relationship between successive
characters. The proposed algorithm is suitable to locate container
codes of different colors, sizes, and alignment modes. The second
contribution is a two-step segmentation approach in the isolation
module to tackle the severity of nonuniform illumination. The
experiments with container images captured from the real port
environment demonstrate the effectiveness of the proposed
technique.

Future work will focus on recognizing container code from mul-
tiple images captured from the same container with one or multi-
ple cameras during its moving. The container images are captured
at the different positions or different time. Thus, the characters on
the container may be clear in one image but not in another one.
The authors believe that integrating or fusing these images for
the same container can improve the performance of automatic
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container-code recognition. This remains a topic for our future
development.
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